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As part of the Acid Rain Biomonitoring Program at Environment Canada, we sampled aquatic biodiversity in 20 acidic lakes in
2009 and 2010 in Kejimkujik National Park and National Historic Site of Canada and vicinity in Nova Scotia. We established
an inventory of current aquatic macroinvertebrate and zooplankton species composition and abundance in each of the 20 study
lakes. A total of 197 macroinvertebrate taxa were identified; the number of taxa observed was positively correlated with pH
across the 20 lakes. Acid-tolerant taxa, such as isopods, amphipods, trichopterans, and oligochaetes, were common and abundant,
while bivalves, gastropods, and leeches were lower in abundance. The number of isopods and amphipods collected was correlated
with calcium concentration; a greater proportion of isopods than amphipods were collected from lakes with low calcium and low
pH. Taxa with hard, calcareous shells, such as bivalves and gastropods, were not present in lakes with low calcium and low pH,
with bivalves occurring only in lakes above pH 4.9. Odonates and ephemeropterans, which were low in abundance, were
associated with a wide range of acidity. Coleopteran abundance was positively correlated with concentrations of dissolved
organic carbon. A total of 26 zooplankton taxa were collected, but only cyclopoid abundance was correlated with lake pH.
Results presented here provide a summary of aquatic biodiversity in lakes in Kejimkujik National Park and National Historic
Site and vicinity and provide a baseline for future monitoring as acid deposition continues to affect this acid-sensitive region
in Atlantic Canada.

Key Words: macroinvertebrates; Kejimkujik National Park and National Historic Site of Canada; water chemistry; acidic lakes;
zooplankton; Nova Scotia

Introduction

Acid deposition remains a widespread stressor of
freshwater ecosystems across southeastern Canada de-
spite legislated reductions in emissions of acidifying
pollutants over recent decades in both Canada and the
United States (Jeffries et al. 2004; Ginn et al. 2007).
Analyses of critical loads of acid deposition in eastern
Canada have suggested regions with carbonate-poor
geology continue to be influenced by acid inputs into
the environment (Doka et al. 2003; Jeffries et al. 2003;
Dupont et al. 2005; Clair et al. 2007, 2011). The effects
of acidification on the diversity of aquatic macroin-
vertebrate species have been well studied (e.g., Dermott
1985; Peterson 1987; Schell and Kerekes 1989; Lento et
al. 2008), and changes in the composition of the aquat-
ic food web can have an impact on higher trophic levels
that rely on these groups for food (Weeber et al. 2004).

In the 1980s, Environment Canada implemented the
Acid Rain Biomonitoring Program to study aquatic
invertebrate species assemblages in acid-sensitive Bore-
al Shield lakes in Ontario (McNicol et al. 1995b; Jef-
fries et al. 2004). In 2009 and 2010, this biomonitoring
program was expanded to include Kejimkujik National
Park and National Historic Site of Canada, which has
a long history of environmental and ecological moni-
toring (Kerekes 1975; Kerekes et al. 1994; Burgess and
Hobson 2006; Wyn et al. 2010; Clair et al. 2011).

In the period from 2000 to 2007, the Kejimkujik
region in southwestern Nova Scotia received an aver-
age of 8 kg - ha'! -year'to 12 kg - ha'! - year! of SO,*
deposition (wet and dry) (Clair et al. 2011). This level
is relatively low compared to the rest of North America.
However, the geology of Kejimkujik National Park and
National Historic Site consists mainly of poorly weath-



erable bedrock that offers little buffering capacity,
and this makes this ecosystem extremely sensitive to
additional inputs of acid from the atmosphere (Clair
et al. 2007). In addition, the landscape in Kejimkujik
National Park and National Historic Site and the sur-
rounding area is composed of naturally acidic habitats
due to the prevalence of bog and fen wetlands. There-
fore, even with further reductions in atmospheric acid
deposition, recovery in these aquatic ecosystems is
expected to be extremely slow (Whitfield ef al. 2006;
Clair et al. 2011).

Although information on the status of and trends
in lake chemistry in Kejimkujik National Park and
National Historic Site is well developed (Clair et al.
2011), only limited research has been completed on the
aquatic biodiversity in these acid-sensitive lakes
(Kerekes and Freedman 1989; Schell and Kerekes
1989). The purpose of this study was: (i) to determine
the current composition and abundance of aquatic
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invertebrate and zooplankton in 20 acid-sensitive
lakes in Kejimkujik National Park and National His-
toric Site and vicinity and (ii) to identify potential
indicator taxa with respect to biological responses to
lake acidity.

Study Area

Kejimkujik National Park and Historic Site is a pro-
tected area of 404 km? located in southwestern Nova
Scotia (Figure 1). Twenty study lakes (17 within the
Park and 3 in the vicinity) were selected to cover a
range of water chemistry parameters. Lakes were cho-
sen to cover the largest possible gradients of acidity/
alkalinity, calcium, colour, and concentration of dis-
solved organic carbon in the study area. All of the 20
lakes were accessible by road or canoe (some back-
country lakes in Kejimkujik National Park and His-
toric Site are not accessible by road, so accessibility
was also a factor). Eight of the lakes were sampled in
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FIGURE 1. Location of 20 acid rain biomonitoring study lakes sampled during 2009 and 2010 in Kejimkujik National Park
and National Historic Site of Canada and surrounding area, Nova Scotia.
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June 2009 (Beaverskin, Big Dam East, George, Graf-
ton, North Cranberry, Pebbleloggitch, Peskawa, and
Puzzle) and the remaining 12 lakes were sampled in
June 2010 (Back, Ben, Big Dam West, Big Red, Don-
nellan, Frozen Ocean, Menchan, McGinty, Peskowesk,
Snake, Turtle, and Upper Silver).

Methods
Sampling methods

As part of an Environment Canada lake monitoring
network, surface water samples were collected by hel-
icopter from the centre of each lake during the spring
and fall turnover periods each year (usually May and
October) (Clair et al. 2011). Samples were collected
at a depth of 0.5 m, kept cool, and shipped overnight
to the Environment Canada Atlantic Laboratory for
Environmental Testing (ALET) in Moncton, New
Brunswick. At every 10th lake, triplicate samples were
collected and compared to each other for quality con-
trol. All water samples were analyzed in the laboratory
for various water chemistry parameters using unfiltered
water following ALET protocols (Clair et al. 2011,
Eaton et al. 2012).

For the collection of aquatic macroinvertebrates and
zooplankton, we followed the sampling protocols of
the Environment Canada Acid Rain Biomonitoring
Program in Ontario and Quebec (see McNicol et al.
1995b). Sampling was completed in mid-June, as this
is a time of high invertebrate biomass and richness and
it is also when local waterbirds that depend on aquatic
prey to raise their young are breeding (McNicol et al.
1996).

At each study lake we conducted 10 benthic drag
samples, 10 water column sweeps, and 10 hoop sam-
ples, and we set 6 minnow traps (McNicol et al. 1996).
All samples were taken at randomly selected sites. Ben-
thic drag samples, which targeted odonates, ephemer-
opterans, bivalves, and gastropods, were conducted in
water less than 1 m in depth. A D-frame dip net (0.85
mm mesh) was dragged over the substrate for a dis-
tance of 0.5 m to collect the top 1-2 cm of substrate
(total sample area of 0.14 m?) (McNicol et al. 1996).
If boulders or rocky substrates made benthic drag sam-
pling impractical, a traveling kick and sweep sample
was completed instead. For these samples, the sampler
walked backwards for a distance of 1 m along the
shoreline (maximum 1 m depth), kicking the bottom
substrate and sweeping the dislodged detritus and in-
vertebrates into the D-frame net (Rosenberg et al.
2000).

Both the benthic drag and the travelling kick and
sweep samples were processed in the same way: detri-
tus in the net was thoroughly rinsed to remove fine
sediments and was transferred to a sample container,
where it was first preserved with 10% buffered forma-
lin for 48 hours and then transferred into 70% ethanol.
Entire benthic samples were later sorted under a dis-
secting microscope. All observed macroinvertebrates
were removed and preserved in 70% ethanol.
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Sweep sampling targeted nektonic invertebrates ac-
tive in the water column. Sweep sampling was con-
ducted in open water less than 5 m from the shore. Sam-
pling was completed by sweeping through the water
column in 10 consecutive arcs using a D-frame dip net
(0.85 mm mesh, 625 cm? capture area) over the bow of
a forward-moving canoe traveling parallel to the shore-
line. Each sweep described an arc from the water sur-
face down to a maximum depth of 1 m and back to the
surface, and a new section of the water column was
sampled with each arc. Captured invertebrates were
picked from the net using forceps and transferred to a
sample container containing 70% ethanol.

Hoop sampling targeted trichopterans and gas-
tropods. A circular hoop of coated wire (diameter of
0.64 m, area of 0.32 m?) was placed on the substrate in
water <0.5 m deep. The hoop was visually searched for
a total of 5 minutes, and all invertebrates observed on
the surface of the substrate and vegetation were re-
moved and preserved in 70% ethanol.

All benthic macroinvertebrates from hoops, sweeps,
kick and sweep samples, and benthic drags were later
identified to species (or lowest taxonomic level possi-
ble).

Minnow traps targeted large nektonic invertebrates.
Six standard Gee’s minnow traps were baited with dry
dog food (Purina Puppy Chow®) and set for a total of
24 hours in near-shore sites where water depth was
approximately 1 m. Specimens were preserved in 70%
ethanol.

Zooplankton sampling was conducted at 15 of the
20 study lakes (5 of the study lakes were <2 m deep
and were therefore too shallow for vertical zooplank-
ton sampling to be carried out). A single vertical haul
was completed at the deepest part of each lake, starting
from 1 m above the sediment to the water’s surface.
Samples were collected using a non-metered zooplank-
ton net (80 um mesh, 26 cm in diameter). The contents
of the net were rinsed into the bottom of the collection
jar and then poured into a sample jar containing 33%
sugared, buffered formalin. All zooplankton samples
were identified to species (or lowest possible taxonom-
ic level).

Data analysis

Counts from all benthic invertebrate sampling pro-
cedures were pooled within each lake for the statistical
analyses. The resulting data from the 20 study lakes
were summarized with respect to mean, minimum, and
maximum counts for each species, as well as the per-
centage of lakes where a given species was observed.
Rare species (n = 72 taxa) were defined as occurring
in < 10% of the study lakes, while common species
(n =125 taxa) occurred in > 10% of the study lakes.
The abundance and percentage composition of the most
abundant taxonomic groups were determined for each
lake, and boxplots where generated to show trends for
individual taxonomic groups of interest. Taxonomic
richness was calculated as the total number of unique
taxa in each lake.
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Associations between water chemistry parameters,
as well as between the total number of macroinverte-
brate taxonomic groups and lake acidity, were evaluat-
ed using Spearman rank correlations. This non-para-
metric method of statistical analysis was employed as
some of the data did not meet assumptions of normal-
ity required for Pearson’s correlations. All statistical
analyses were completed using SYSTAT 13 (SYSTAT
Software Inc., Chicago, Illinois).

Zooplankton data were summarized by mean den-
sity (number of individuals/m?) for each of the 15 lakes,
and the percentage of lakes a given species was ob-
served in was also calculated.

Results

Fish were present in all 20 of the study lakes (Kere-
kes 1975; Drysdale et al. 2005). Mean water chemistry
values for each lake are presented in Table 1. Many of
the study lakes were oligotrophic and darkly coloured
(99-202 Hazen units) due to dissolved organic com-
pounds leached from nearby bogs. Mean lake pH var-
ied from 4.3 (Big Red Lake) to 6.6 (McGinty Lake)
(Table 1). pH and calcium concentrations were positive-
ly correlated in the study lakes (r, = 0.747, P < 0.001);
pH and dissolved organic carbon were negatively cor-
related (r, = —0.715, P <0.001).

A total of 26 zooplankton species were observed in
the study lakes, with many of the common taxa ob-
served across a wide gradient of acidity (Supplemen-
tary Table 1). Only the abundance of Cyclopoida was
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significantly correlated with lake pH (r, = 0.536, P =
0.040).

A total of 197 taxa of aquatic macroinvertebrates
were observed (149 were identified to species, 38 to
genus, and 10 to family) (Supplementary Table 2). The
total number of taxa in each lake was positively cor-
related with both lake pH (Figure 2) (r,= 0.554, P =
0.011) and calcium concentrations (r, = 0.463, P =
0.040). Taxon richness was not significantly associat-
ed with dissolved organic carbon (r; = —0.390, P =
0.090). Total abundance (number of individuals of all
macroinvertebrates captured in each lake) was not
correlated with any water chemistry parameter.

The most abundant benthic invertebrate groups in
the 20 study lakes were Isopoda, Amphipoda, Oligo-
chaeta, and Trichoptera (Figures 3A and 3B). Only one
species of isopod was observed (Caecidotea commu-
nis), but it constituted up to 60% of the macroinver-
tebrates collected in some lakes (e.g., Peskowesk Lake)
(Figure 3A). The abundance of isopods (Caecidotea
communis) was lower in lakes with high pH and cal-
cium levels and higher in lakes with low calcium levels
(Figure 4A) (r,=-0.614, P = 0.004). Amphipods were
also abundant, with Hyalella azteca collected in 19 of
the 20 lakes. There was a significant positive relation-
ship between amphipod abundance and calcium levels
(Figure 4B) (r,= 0.776, P < 0.001). The proportion of
isopods relative to amphipods decreased with increas-
ing lake pH and calcium, with two exceptions (Big
Dam East Lake and Turtle Lake) (Figure 4C).
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FIGURE 2. Total number of aquatic invertebrate taxa observed in relation to pH of 20 lakes sampled in June 2009 and 2010 in
Kejimkujik National Park and National Historic Site of Canada and vicinity in Nova Scotia. Note the significant positive
trend between lake pH and the number of invertebrate taxa (P = 0.005, = 0.36).
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FIGURE 3. Percentage composition (panel A) and total abundance (panel B) of various taxonomic groups sampled in June
2009 and 2010 in 20 lakes in Kejimkujik National Park and National Historic Site of Canada and vicinity in Nova
Scotia. Total abundance is the total number of individuals collected per lake. Lakes are arranged from the most
acidic (Big Red Lake) (pH 4.3) to the least acidic (McGinty Lake) (pH 6.6).

Lakes with high pH and calcium concentrations had
a larger number of bivalves, gastropods, and leeches
(Hirudinea) (Figure 5). Bivalves were observed only
in lakes with pH greater than approximately 4.9, and
abundance was significantly correlated with lake acidity
(Figure 5A) (r, = 0.775, P < 0.001). Gastropod abun-
dance was also significantly correlated with pH (Fig-
ure 5B) (v, = 0.539, P = 0.014). Similarly, Hirudinea
abundance was significantly correlated with lake pH

(Figure 5C) (= 0.789, P < 0.001). No leeches were
collected from lakes with pH <5.5, with the exception
of a few individuals from the Erpobdellidae family cap-
tured in Peskawa Lake (pH 4.8) and Peskowesk Lake
(pH 5.0). In contrast, abundance of coleopterans was
significantly correlated with dissolved organic car-
bon (Figure 6) (r, = 0.650; P = 0.002), but not with
pH or calcium (P > 0.05).
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FIGURE 4. Abundance of the isopod Caecidotea communis (panel A), the amphipod Hyalella azteca (panel B), and the corre-
sponding proportions of these two species (panel C) observed in 20 lakes sampled in June 2009 and 2010 in
Kejimkujik National Park and National Historic Site of Canada and vicinity in Nova Scotia. Lakes are arranged by
level of calcium from the lowest (Ben Lake) (0.18 mg/L) to the highest (McGinty Lake) (1.12 mg/L). For panels A
and B, the horizontal line indicates the median, ® indicates mean, box indicates 25th and 75th percentiles, whiskers
indicate minimum and maximum data points within 1.5 x the box height from the bottom or top (respectively), and
asterisks mark outliers.
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mark outliers.
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cates the median, ® indicates mean, box indicates 25th and 75th percentiles, whiskers indicate minimum and maxi-
mum data points within 1.5 x the box height from the bottom or top (respectively), and asterisks mark outliers.

Discussion

We found that both pH and calcium were signifi-
cantly correlated with the number of aquatic macroin-
vertebrate taxa observed in the study lakes. Lakes that
were less acidic and lakes with higher calcium con-
centrations tended to have greater species richness.
These findings are consistent with other studies, which
also reported fewer aquatic invertebrate taxa in more
acidic lakes (McNicol ef al. 1995a; Doka et al. 1997).
However, the relationship between chemical conditions
and the abundance of macroinvertebrates was less clear.

Fish were present in all of the study lakes (Kerekes
1975; Drysdale et al. 2005), and the presence of fish
likely influenced the macroinvertebrate and zooplank-
ton species richness. The most frequently collected taxa
were isopods, amphipods, and trichopterans. Gastro-
pods, bivalves, and ephemeropterans, commonly con-
sidered to be more sensitive to acidity, were collected
less frequently during the study. Lakes with lower pH
had fewer taxa (consisting mostly of isopods, coleopter-
ans, and oligochaetes), while lakes with higher pH had
greater taxa richness.

Isopoda and amphipoda
Only one species of isopod was collected (Caeci-
dotea communis), but this species was present in all 20

study lakes. Caecidotea communis was also the most
abundant taxon in many of the study lakes, comprising
> 30% of the macroinvertebrates collected in 11 of the
lakes. The abundance of this species was negatively
correlated with calcium concentrations, and the high-
est numbers were found in the most acidic lakes (e.g.,
Peskawa Lake, Ben Lake, Peskowesk Lake). Schell and
Kerekes (1989) also reported Isopoda in Nova Scotia
lakes with pH as low as 4.4.

Isopods are known to be acid tolerant (Merritt ez al.
2008), but their high frequency of occurrence in lakes
in this study contrasts with their relative rarity in lakes
monitored in Ontario (RCW et al., unpublished data).
Potential explanations include differences in the species
found in the two datasets (Ontario isopods were iden-
tified only to order), regional differences in species
habitat affinities, or a relative dominance of substrate
type or other habitat conditions that encourage isopod
abundance in lakes in this study area. Because sam-
pling methods were similar in the two regions, we do
not believe sampling variation is likely to be respon-
sible for these differences.

Amphipods were also common, and their abundance
was greater in lakes with high pH and high calcium
concentrations. Two species of amphipods were col-
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lected: Crangonyx richmondensis (collected in 55% of
study lakes) and Hyalella azteca (collected in 95% of
study lakes). In this study, H. azteca was present across
a broad pH range (i.e., 4.3 to 6.6). Studies in Ontario
have identified this species as acid sensitive (McNicol
et al. 1995a), with a minimum pH threshold of 5.6 or
higher (Stephenson ez al. 1986; Rosenberg et al. 1997;
Snucins 2003). In this study, however, H. azteca ap-
peared to be very acid tolerant and was observed in
lakes with pH as low as 4.3.

Peterson (1987) also observed Hyalella in lakes with
low pH (4.5-5.5) in Nova Scotia and New Brunswick,
and reported that Hyalella species in lakes in the Mar-
itimes appear to be more tolerant of acidic conditions
than other Amphipoda. However, the lakes in that par-
ticular study had higher concentrations of calcium than
the study lakes with low pH in southwestern Nova Sco-
tia or in acidified lakes in Ontario (Peterson 1987). The
lakes in this study with low pH also had low calcium
concentrations.

It may be possible that a localized population of H.
azteca has adapted to the acidic environment in the
lakes in Kejimkujik National Park and National His-
toric Site. A genetic study by Witt and Hebert (2000)
examined populations of H. azteca from various loca-
tions across North America and found a complex of at
least seven species rather than a single species as pre-
viously believed. Grapentine and Rosenberg (1992)
also suggested that populations of H. azfeca may have
adapted to acidic conditions in some regions of Canada.

Interpretation of regional variation in H. azfeca habi-
tat associations and identification of their potential role
in biological monitoring of lakes in this study area
would benefit from an improved understanding of the
geographic variation in their genetic profile and the
consequences for their tolerance of acidic conditions.

When we compared the relative proportions of iso-
pods and amphipods across the 20 study lakes, we
found that isopods were dominant in lakes with low
pH and low calcium concentrations while amphipods
were dominant in lakes with high pH and high calci-
um concentrations. Both amphipods and isopods are
photosensitive and avoid bright light by moving into
crevices or under rocks, leaves, and roots (Covich and
Thorp 2001, page 791), where they are less exposed
(complex substrates provide protection from preda-
tion by fish and crayfish) (Covich and Thorp 2001,
page 791). The substrate in many of the study lakes
consists of cobbles and boulders, which may partially
explain the high abundance of these two taxa.

Bivalvia and gastropoda

Invertebrate taxa with hard, calcareous shells such as
bivalves and gastropods were generally collected only
from less acidic lakes. A total of 10 species of bivalves
and 12 species of gastropods were collected. Bivalve
abundance was correlated with lake pH: bivalves were
observed only in lakes where pH was greater than 4.9.
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Because many lakes in the study area are acidic and
have low calcium concentrations, low abundance of
calcium-dependent macroinvertebrate taxa was expect-
ed. Our results are consistent with a previous study of
8 acid-sensitive Nova Scotia lakes by Schell and Ker-
ekes (1989), which found that bivalves did not occur
below a pH of 5.0.

This exclusion of calcareous species in acidic lakes
has also been noted for other acid-sensitive regions of
castern Canada (Weeber et al. 2004; Jeziorski et al.
2008). As calcium concentrations in many acidified
lakes continue to decline (Jeziorski et al. 2008), this
may further reduce the abundance and distribution of
calcium-rich taxa such as bivalves and gastropods in
lakes in the study area.

Gastropods were also generally more abundant in
lakes with high pH and high calcium concentrations;
this finding is consistent with results from Ontario
(Bendell and McNicol 1993). One exception to this is
Ferrissia fragilis, which was the only species collect-
ed in lakes in the study area with pH lower than 6.
Bendell and McNicol (1993) also reported Ferrissia as
an acid-tolerant gastropod in study lakes in Ontario,
where it was the only gastropod taxon observed in
lakes with pH below 6. That study also suggested that,
above the minimal pH thresholds, gastropod abun-
dance in small oligotrophic lakes was not limited by
acidity or calcium concentrations but rather by food re-
sources. Predation, substrate type, and macrophyte bio-
mass can also play a large role in gastropod distribu-
tions (Brown 2001, page 310). In our study lakes, the
abundance of Ferrissia fragilis also did not appear to
be associated with pH, calcium, or dissolved organic
carbon and thus is likely limited by some other con-
straint such as predation or availability of food re-
sources.

Hirudinea

A total of 12 species of leeches were collected from
the study lakes, with only 4 of those species being com-
mon (i.e., occurring in >10% of the lakes). Counts were
generally low, and abundance was correlated with lake
pH. Hirudinea were not observed in lakes with pH
< 5.5, with the exception of two Mooreobdella fervida
collected in Peskawa Lake (pH 4.8) and one Erpob-
della punctata collected in Peskowesk Lake (pH 5.0).

Bendell and McNicol (1991) observed similar reduc-
tions in the diversity and abundance of Hirudinea in
acidic conditions below pH 5.5. However, they sug-
gested that acidity alone does not predict the distribu-
tion of leech species and that predation and availability
of suitable prey also influenced their distribution (Ben-
dell and McNicol 1991). In addition, other studies have
shown that, although leeches are sensitive to low pH,
their occurrence and abundance are also influenced by
other factors, such as lake productivity (Schalk ez al.
2001). Lakes in Kejimkujik National Park and Nation-
al Historic Site are oligotrophic and generally have low
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productivity (especially at the lower pH range), and
lower abundance of preferred prey may therefore play
an important role in the distribution of leeches there.

Coleoptera

Although lower in abundance than other groups,
coleopterans appeared to be tolerant of acidity and were
collected in all 20 study lakes. A total of 14 taxa were
observed (8 were common and 6 were uncommon).
The abundance of this taxonomic group was correlated
with dissolved organic carbon. A study of Ontario lakes
by Lento et al. (2008) also suggested a strong correla-
tion between macroinvertebrate abundances and dis-
solved organic carbon, especially in acidic lakes. Wood
et al. (2011) reported that dissolved organic carbon can
protect against the deleterious effects of low pH on
organismal function via physiological mechanisms.
Dissolved organic carbon can alter the permeability of
cell membranes in acidic conditions and also influence
transport physiology (Wood et al. 2011).

Other studies have suggested that water chemistry is
not as important a stressor on coleopterans as predation
by fish (Bendell and McNicol 1987; Arnott et al. 2006).
The darkly coloured water of some lakes in the study
area (due to high concentrations of dissolved organic
carbon) may provide coleopteran taxa with some pro-
tection from predation by fish and other visual preda-
tors.

Trichoptera

Trichopterans were common and taxonomically di-
verse in the study lakes, with 23 of the 30 taxa occur-
ring in >10% of the lakes. Trichopteran species col-
lected included taxa from 10 families, with the most
common and abundant families being Hydroptilidae,
Leptoceridae, and Limnephilidae. The trichopterans
collected in the study lakes generally had a high appar-
ent tolerance to acidity, with many of the observed
species occurring across a wide gradient in lake pH.

Trichoptera abundance can be strongly influenced
by fish predation, and trichopterans generally associated
with fishless conditions, such as the leptocerid Triaen-
odes and phryganeid Banksiola (Bendell and McNicol
1995), were rare in the study lakes. Both of these organ-
isms are quite large and thus are likely to be attractive
prey for insectivorous fish. In contrast, the leptocerid
Nectopsyche was quite abundant. They are smaller in
size and construct cases with bristling twigs or elongate
sticks attached that may make them more difficult for
fish to consume as prey (Wiggins 2004).

Ephemeroptera and odonata

Ephemeroptera generally had low abundance in the
20 study lakes, with a total of 10 taxa collected. This is
likely due to the acidity of the lakes, as ephemeropter-
ans are recognized as being sensitive to acidity (Car-
bone et al. 1998). Seven of the ephemeropteran taxa
were common, and 3 were uncommon. The most fre-
quently collected species were Caenis diminuta and the
genus Eurylophella, which have been reported to have
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at least some tolerance to acidity (Carbone et al. 1998).
No ephemeropterans were collected from Ben Lake,
which is low in pH (4.8) and had the lowest calcium
levels of the 20 study lakes (0.18mg/L).

Odonates were taxonomically diverse in the study
lakes, with a total of 30 species observed (22 species
were common and 8 were uncommon). However,
counts were generally low, and odonates did not make
up a large proportion of macroinvertebrates in terms
of abundance. The most abundant family of damselflies
(suborder Zygoptera) was Coenagrionidae, which was
observed across a wide gradient of acidity. Larvae in
this family are relatively small (Hilsenhoff 2001, page
671) and thus may be less visible to predators such as
fish or larger predatory odonates.

Within the suborder Anisoptera (dragonflies), the
most common families observed in the study lakes
were Corduliidae, Gomphidae, and Libellulidae, while
Aeshnidae were rare. Anisoperta taxa also occurred
across a wide gradient of acidity; for example, Cordu-
lia shurtleffi was observed in 65% of the study lakes
(pH 4.3-6.6). Bendell and McNicol (1995) also found
that abundance of this particular taxon was not related
to lake acidity in Ontario lakes.

Diptera

With the exception of chironomids, Diptera were not
abundant in the study lakes. Ceratopogonidae were
present in all 20 study lakes, and no correlation with
acidity was detected. Chironomidae were frequently
collected in all of the study lakes, but were not target-
ed in our sampling and sorting, so specimens were not
identified to species level.

Hemiptera

Very few water striders were captured in the study
lakes. The only species with high abundance was Rheu-
matobates rileyi, in particular in Upper Silver Lake.
Although the abundance of this particular species has
been shown to have a strong correlation with pH
(Bendell 1988), acidity did not appear to be the main
driver in the presence of this particular species in the
study lakes.

Zooplankton

Of the 26 zooplankton species observed in the 15
study lakes, many were common and occurred across
a wide gradient of acidity. Daphniids were the only
taxonomic group that showed a clear correlation with
acidity in the study lakes: they were not observed below
a pH of 5.5. This finding is consistent with previous
studies, which have shown daphniids to be acid sensi-
tive (Yan et al. 2008; Korosi and Smol 2012). In addi-
tion, daphniids are sensitive to calcium levels (Jeziors-
ki et al. 2008), and this may also explain their absence
in the lakes that had low pH and low calcium concen-
trations.

With the exception of daphniids, zooplankton abun-
dance in the study lakes did not appear to be correlated
with acidity alone. Dissolved organic carbon has been
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shown to affect zooplankton populations, and the high
concentrations of dissolved organic carbon in some
of the study lakes may provide some protection from
visual predators (Yan et al. 2008). Using paleolimno-
logical methods in 3 lakes in Kejimkujik National Park
and National Historic Site, Korosi and Smol (2012)
found that there was a more pronounced change in-
duced by acidification in the assemblage of cladocer-
ans in clearwater lakes with lower concentrations of
dissolved organic carbon over time than in assemblages
in dark water lakes with more dissolved organic carbon.
Zooplankton can also be influenced by a large vari-
ety of natural factors, such as the availability of food,
competition with other zooplankton species, the pres-
ence of parasites, and the presence of both vertebrate
and invertebrate predators (Yan et al. 2008).

Future directions and conclusions

These results provide a summary of the aquatic mac-
roinvertebrate and zooplankton assemblages in acid-
sensitive lakes in Kejimkujik National Park and Nation-
al Historic Site and surrounding area in southwestern
Nova Scotia. Although some of the overall trends of
macroinvertebrate species richness with respect to vary-
ing pH were similar to results reported in other regions
of eastern Canada, several differences were noted.

Some of the lakes in the study area had physical
characteristics that differed from acid-sensitive lakes
in other regions of eastern Canada, and these physical
characteristics influenced the type and abundance of
benthic macroinvertebrates that were collected. pH can
vary spatially within each lake as well as seasonally
due to runoff, with pulses of acidity in the spring and
fall (Clair et al. 2007). These pulses also coincide with
lower temperatures, and at these times of the year
organisms may be less active and therefore more toler-
ant of their acidic environment (Stephenson and Mack-
ie 1994). Although benthic microhabitats near the lake
bed can have lower acidity than the upper water column
(Grapentine and Rosenberg 1992), lakes in the study
area are shallow with a large surface area which often
allows for mixing throughout the open-water period.
Therefore, benthic organisms would likely be exposed
to high acidity throughout the active growth period in
the summer.

All aquatic sampling methods have inherent biases
in their sampling efficiencies for different invertebrate
taxa. We employed multiple sampling methods in order
to collect a wide range of taxa, but there was likely to
have been variation in efficiency among the sampling
methods with respect to particular taxa. Because the
same suite of methods was used in all lakes, we assume
the effects of this variation were consistent across the
20 study lakes, and we emphasize comparisons of in-
vertebrate taxa patterns between lakes, rather than with-
in lakes.

Our sampling methods, which were initially devel-
oped to collect benthic invertebrates from thick organic
sediments in small Boreal Shield lakes in Ontario
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(McNicol et al. 1995b), may not be have been as suit-
able for lakes with rocky substrates. Although regional
variation in species’ habitat affinities may have con-
tributed to particular differences between the findings
from this study and reports from other regions (e.g.,
isopods, H. azteca distributions), substrate or other dif-
ferences in the habitat also may have been a factor.
Hoop sampling (visual searches in a confined area
along the shoreline) worked particularly well in our
lakes for sampling species of Trichoptera. Future stud-
ies should incorporate traditional benthic drag sampling
with other methods such as kick and sweep, rock pick-
ing, or artificial substrates.

Carbone et al. (1998) successfully sampled macro-
invertebrates in shallow, rocky littoral habitats using
substrate cages filled with native rocks to match the
rocky littoral substrate of sample lakes. This method
might work well in Kejimkujik National Park and Na-
tional Historic Site, where the littoral zone of many
lakes is extremely shallow and consists of cobble and
boulders. Many species collected in the study were rare
(occurring in only one or two of the lakes) and had low
counts. Increasing sampling effort, especially in the
large lakes with varying substrate types, would reduce
the likelihood of missed taxa.

Another interesting difference between the lakes in
Kejimkujik National Park and National Historic Site
and the lakes in the Boreal Shield in Ontario is the high
concentration of dissolved organic carbon due to natu-
rally occurring bogs and wetlands in the watersheds.
The extremely dark waters of some lakes in the study
area may benefit particular invertebrate species through
physiology, protection from visual predators, or other
reasons.

The data presented here establish a baseline for
future monitoring in Kejimkujik National Park and
National Historic Site as acid deposition continues to
affect this region. Because the lakes are naturally acidic
and are extremely vulnerable to additional acid inputs,
recovery is slower than in other regions in eastern
Canada affected by acid deposition (Clair et al. 2011).
Additional effort may be required to reduce the impacts
of acidification on the aquatic organisms that live in
these ecosystems.
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